📗
TimeSeriesAnalysis101
  • 时间序列分析101:序言
  • 1. 概述
  • 2. 准备和处理时间序列数据
    • 2.1 准备数据集
    • 2.2 寻找时间轴
    • 2.3 时间序列可能遇到的问题
    • 2.4 清洗数据
      • 2.4.1 缺失值处理
      • 2.4.2 改变数据集时间频率
      • 2.4.3 平滑数据
  • 3. 探索式分析(EDA)
    • 3.1 针对时间序列的特殊方法
      • 3.1.1 理解平稳性
      • 3.1.2 寻找自相关
      • 3.1.3 虚假相关性
    • 3.2 常用的可视化图表
      • 3.2.1 1D可视化
      • 3.2.2 2D可视化
  • 4. 基于统计学的时间序列分析方法
    • 4.1 自回归模型(Autoregressive)
    • 4.2 移动平均模型(Moving Average)
    • 4.3 差分整合移动平均自回归模型(Autoregressive Integrated Moving Average)
    • 4.4 向量自回归模型(Vector Autoregression)
    • 4.5 基于统计学方法的优势与劣势
  • 5. 特征生成和特征选择
    • 5.1 特征工程的考虑
    • 5.2 常用的特征清单
    • 5.3 自动特征生成与选择
  • 6. 基于机器学习的时间序列分析方法
    • 6.1 时间序列分类问题
    • 6.2 时间序列聚类问题
  • 7. 基于深度学习的时间序列分析方法
    • 7.1 LSTM长短期记忆网络
      • 7.1.1 使用Pytorch搭建
      • 7.1.2 使用Darts调用
    • 7.2 CNN卷积神经网络
  • 8. 模型评估和性能考虑
    • 8.1 模型评估的考虑
    • 8.2 计算效率的考虑
Powered by GitBook
On this page

Was this helpful?

3. 探索式分析(EDA)

常规来说,EDA有一些通用方法,如直方图观察频率分布情况,散点图观察不同列的相关关系,折线图观察趋势变化等,这里不做赘述,下面重点将介绍针对时间序列的特殊方法。

Previous2.4.3 平滑数据Next3.1 针对时间序列的特殊方法

Last updated 3 years ago

Was this helpful?