📗
TimeSeriesAnalysis101
  • 时间序列分析101:序言
  • 1. 概述
  • 2. 准备和处理时间序列数据
    • 2.1 准备数据集
    • 2.2 寻找时间轴
    • 2.3 时间序列可能遇到的问题
    • 2.4 清洗数据
      • 2.4.1 缺失值处理
      • 2.4.2 改变数据集时间频率
      • 2.4.3 平滑数据
  • 3. 探索式分析(EDA)
    • 3.1 针对时间序列的特殊方法
      • 3.1.1 理解平稳性
      • 3.1.2 寻找自相关
      • 3.1.3 虚假相关性
    • 3.2 常用的可视化图表
      • 3.2.1 1D可视化
      • 3.2.2 2D可视化
  • 4. 基于统计学的时间序列分析方法
    • 4.1 自回归模型(Autoregressive)
    • 4.2 移动平均模型(Moving Average)
    • 4.3 差分整合移动平均自回归模型(Autoregressive Integrated Moving Average)
    • 4.4 向量自回归模型(Vector Autoregression)
    • 4.5 基于统计学方法的优势与劣势
  • 5. 特征生成和特征选择
    • 5.1 特征工程的考虑
    • 5.2 常用的特征清单
    • 5.3 自动特征生成与选择
  • 6. 基于机器学习的时间序列分析方法
    • 6.1 时间序列分类问题
    • 6.2 时间序列聚类问题
  • 7. 基于深度学习的时间序列分析方法
    • 7.1 LSTM长短期记忆网络
      • 7.1.1 使用Pytorch搭建
      • 7.1.2 使用Darts调用
    • 7.2 CNN卷积神经网络
  • 8. 模型评估和性能考虑
    • 8.1 模型评估的考虑
    • 8.2 计算效率的考虑
Powered by GitBook
On this page

Was this helpful?

  1. 7. 基于深度学习的时间序列分析方法
  2. 7.1 LSTM长短期记忆网络

7.1.1 使用Pytorch搭建

import torch
import torch.nn as nn

from sklearn.preprocessing import MinMaxScaler
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

数据导入和准备

# 导入酒精销售数据
df = pd.read_csv('data\Alcohol_Sales.csv',index_col=0,parse_dates=True)
len(df)
df.head()  # 观察数据集,这是一个单变量时间序列
plt.figure(figsize=(12,4))
plt.grid(True)
plt.plot(df['S4248SM144NCEN'])
plt.show()
y = df['S4248SM144NCEN'].values.astype(float)

test_size = 12

# 划分训练和测试集,最后12个值作为测试集
train_set = y[:-test_size]
test_set = y[-test_size:]
# 归一化至[-1,1]区间,为了获得更好的训练效果
scaler = MinMaxScaler(feature_range=(-1, 1))
train_norm = scaler.fit_transform(train_set.reshape(-1, 1))

创建时间序列训练集

# 转换成 tensor
train_norm = torch.FloatTensor(train_norm).view(-1)

# 定义时间窗口,注意和前面的test size不是一个概念
window_size = 12

# 这个函数的目的是为了从原时间序列中抽取出训练样本,也就是用第一个值到第十二个值作为X输入,预测第十三个值作为y输出,这是一个用于训练的数据点,时间窗口向后滑动以此类推
def input_data(seq,ws):  
    out = []
    L = len(seq)
    for i in range(L-ws):
        window = seq[i:i+ws]
        label = seq[i+ws:i+ws+1]
        out.append((window,label))
    return out


train_data = input_data(train_norm,window_size)
len(train_data)  # 等于325(原始数据集长度)-12(测试集长度)-12(时间窗口)
# 观察某一个数据点
train_data[0]
(tensor([-0.9268, -0.9270, -0.8340, -0.7379, -0.7966, -0.7439, -0.7547, -0.8109,
         -0.8128, -0.7901, -0.7933, -0.6743]),
 tensor([-1.]))

定义模型

class LSTMnetwork(nn.Module):
    def __init__(self,input_size=1,hidden_size=100,output_size=1):
        super().__init__()
        self.hidden_size = hidden_size

        # 定义LSTM层
        self.lstm = nn.LSTM(input_size,hidden_size)

        # 定义全连接层
        self.linear = nn.Linear(hidden_size,output_size)

        # 初始化h0,c0
        self.hidden = (torch.zeros(1,1,self.hidden_size),
                       torch.zeros(1,1,self.hidden_size))

    def forward(self,seq):
        # 前向传播的过程是输入->LSTM层->全连接层->输出

        # https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html?highlight=lstm#torch.nn.LSTM
        # 在观察查看LSTM输入的维度,LSTM的第一个输入input_size维度是(L, N, H_in), L是序列长度,N是batch size,H_in是输入尺寸,也就是变量个数
        # LSTM的第二个输入是一个元组,包含了h0,c0两个元素,这两个元素的维度都是(D∗num_layers,N,H_out),D=1表示单向网络,num_layers表示多少个LSTM层叠加,N是batch size,H_out表示隐层神经元个数
        lstm_out, self.hidden = self.lstm(seq.view(len(seq),1,-1), self.hidden)

        pred = self.linear(lstm_out.view(len(seq),-1)) 
        return pred[-1]  # 输出只用取最后一个值

定义损失函数和优化函数

torch.manual_seed(101)
model = LSTMnetwork()

criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 看下这个网络结构总共有多少个参数
def count_parameters(model):
    params = [p.numel() for p in model.parameters() if p.requires_grad]
    for item in params:
        print(f'{item:>6}')
    print(f'______\n{sum(params):>6}')

count_parameters(model)
   400
 40000
   400
   400
   100
     1
______
 41301

训练模型

epochs = 100

start_time = time.time()

for epoch in range(epochs):

    for seq, y_train in train_data:

        # 每次更新参数前都梯度归零和初始化
        optimizer.zero_grad()
        model.hidden = (torch.zeros(1,1,model.hidden_size),
                        torch.zeros(1,1,model.hidden_size))

        y_pred = model(seq)

        loss = criterion(y_pred, y_train)
        loss.backward()
        optimizer.step()

    print(f'Epoch: {epoch+1:2} Loss: {loss.item():10.8f}')

print(f'\nDuration: {time.time() - start_time:.0f} seconds')

模型预测和评估

future = 12

# 选取序列最后12个值开始预测
preds = train_norm[-window_size:].tolist()

# 设置成eval模式
model.eval()

# 循环的每一步表示向时间序列向后滑动一格
for i in range(future):
    seq = torch.FloatTensor(preds[-window_size:])
    with torch.no_grad():
        model.hidden = (torch.zeros(1,1,model.hidden_size),
                        torch.zeros(1,1,model.hidden_size))
        preds.append(model(seq).item())
# 逆归一化还原真实值
true_predictions = scaler.inverse_transform(np.array(preds[window_size:]).reshape(-1, 1))
# 对比真实值和预测值
plt.figure(figsize=(12,4))
plt.grid(True)
plt.plot(df['S4248SM144NCEN'])
x = np.arange('2018-02-01', '2019-02-01', dtype='datetime64[M]').astype('datetime64[D]')
plt.plot(x,true_predictions)
plt.show()
# 放大看
fig = plt.figure(figsize=(12,4))
plt.grid(True)
fig.autofmt_xdate()

plt.plot(df['S4248SM144NCEN']['2017-01-01':])
plt.plot(x,true_predictions)
plt.show()

预测未来的时间序列值

# 重新开始训练
epochs = 100

# 切回到训练模式
model.train()

y_norm = scaler.fit_transform(y.reshape(-1, 1))
y_norm = torch.FloatTensor(y_norm).view(-1)
all_data = input_data(y_norm,window_size)


start_time = time.time()

for epoch in range(epochs):

    for seq, y_train in all_data:  

        optimizer.zero_grad()
        model.hidden = (torch.zeros(1,1,model.hidden_size),
                        torch.zeros(1,1,model.hidden_size))

        y_pred = model(seq)

        loss = criterion(y_pred, y_train)
        loss.backward()
        optimizer.step()

    print(f'Epoch: {epoch+1:2} Loss: {loss.item():10.8f}')

print(f'\nDuration: {time.time() - start_time:.0f} seconds')
# 重新预测
window_size = 12
future = 12
L = len(y)

preds = y_norm[-window_size:].tolist()

model.eval()
for i in range(future):  
    seq = torch.FloatTensor(preds[-window_size:])
    with torch.no_grad():

        model.hidden = (torch.zeros(1,1,model.hidden_size),
                        torch.zeros(1,1,model.hidden_size))  
        preds.append(model(seq).item())


true_predictions = scaler.inverse_transform(np.array(preds).reshape(-1, 1))


x = np.arange('2019-02-01', '2020-02-01', dtype='datetime64[M]').astype('datetime64[D]')

plt.figure(figsize=(12,4))
plt.grid(True)
plt.plot(df['S4248SM144NCEN'])
plt.plot(x,true_predictions[window_size:])
plt.show()
fig = plt.figure(figsize=(12,4))
plt.grid(True)
fig.autofmt_xdate()
plt.plot(df['S4248SM144NCEN']['2017-01-01':])
plt.plot(x,true_predictions[window_size:])
plt.show()
Previous7.1 LSTM长短期记忆网络Next7.1.2 使用Darts调用

Last updated 3 years ago

Was this helpful?